Journée "HPC et décomposition de domaines" (7 avril 2016)

Nous vous informons de l'organisation d'une journée sur le Calcul Haute Performance et la Décomposition de Domaines,
le jeudi 7 avril 2016. Et nous vous invitons à y participer.

https://www.math.univ-paris13.fr/hpcdd/


Cette journée prendra la forme d'une présentation de Posters et d'une série de présentations orales de 45 minutes par 5 conférenciers invités, à savoir:

Ces présentations seront séparées par des pauses café offertes, permettant les échanges et les discussions autour des Posters.
Nous vous invitons donc à vous inscrire à partir de la page web du colloque et à y indiquer si vous avez l'intention d'exposer un Poster (jusqu'au 31 Mars).
Une session de présentations "flash" des Posters (de quelques minutes, en fonction du nombre total)  permettra d'expliquer le contenu de vos Posters.

Bien cordialement,

Le comité d'organisation
Laurence Halpern, Camille Coti,  Emmanuel Audusse, Fayssal Benkhaldoun, Christophe Cérin, Evaggelos Kritsikis, Vuk Milisic, Pascal Omnes, Gilles Scarella

Rencontres "Calcul intensif et Sciences des données" (16 et 17 avril 2015)

Calcul intensif et Sciences des données
VILLETANEUSE 2015
16 et 17 avril 2015
Salles F001-F002
Institut Galilée, Villetaneuse


Listes des sujets couverts lors des rencontres :
o Calcul scientifique parallèle ;
o Gestion de masses de données dans le cadre de l'apprentissage ;
o Gestion de données massives dans les entrepôts ;
o Grilles et Clouds ;
o Images ;

Read more: Rencontres "Calcul intensif et Sciences des données" (16 et 17 avril 2015)

Journée "Conception et Vérification Formelle de Protocoles Distribués" (26 Novembre 2013)

Le pôle MathStic de l'université Paris 13 organise une journée "Conception et Vérification Formelle de Protocoles Distribués" le 26 Novembre 2013.
La journée aura lieu en salle L322/324, Institut Galilée, Université Paris 13.

Le programme de la journée est le suivant:

09h00    Accueil

09h15    Fabrice Kordon (Professeur, LIP6-UPMC) : Verification of a Quasi certification Protocol over a Distributed Hash Table (DHT).
10h00    Pause
10h30    Isablle Augé-Blum (MdC, CITI - INSA Lyon) : Validation formelle de protocoles temps réel pour réseaux de capteurs sans fil.
11h15    François Vernadat (Professeur, LAAS) : Fiacre/TINA: Un environnement pour la description et vérification de systèmes temps réel.
12h00    Buffet
13h30    Saadi Boudjit (MdC, L2TI-UP13) : SN-MPR: Protocole de Routage Optimisé pour Réseaux de Capteurs Sans Fil à Large Echelle.
14h15    Laure Petrucci (Profeseur, LIPN-UP13) : Precise Robustness Analysis of Time Petri Nets with Inhibitor Arcs.
15h00    Pause
15h30    Salim Allal (Doctorant, L2TI-UP13), Saadi Boudjit (MdC, L2TI-UP13) : GeoSUZ: A Geocast Routing Protocol in SubZORs for Vanets.
16h15    Sami Evangelista (MdC, LIPN-UP13) : Formal Analysis of the NEO Protocol for Large Scale Distributed Database.
17h00  Table ronde et clôture.


Pour des raisons d'organisation, merci de nous prévenir par mail si vous souhaitez venir (This email address is being protected from spambots. You need JavaScript enabled to view it.This email address is being protected from spambots. You need JavaScript enabled to view it.).

 
Saadi BOUDJIT, Kaïs KLAI (organisateurs de la journée).

Calcul Intensif Distribué pour l'Industrie "CAIDI 2014"

 

 

Le pôle MathSTIC de l'université Paris 13, en collaboration avec l’association Aristote et la formation d’ingénieurs MACS-SupGalilée, organise une journée thématique “Calcul Intensif Distribué dans l'Industrie” le mercredi 22 janvier 2014 à l’Institut Galilée de l’Université Paris 13.

Coordination scientifique:

  • Laurence Halpern (LAGA, Université Paris 13)
  • Juliette Ryan (ONERA)
  • Philippe d'Anfray (Aristote, CEA)

Université Paris 13, campus de Villetaneuse, amphithéâtre C


Cette journée sera centrée sur le calcul parallèle et les méthodes de décomposition de domaines, pour les calculs de systèmes complexes réalisés dans l’industrie ou dans la recherche appliquée. Elle verra se rencontrer des mathématiciens, des informaticiens, des ingénieurs, des responsables de grands projets de recherche appliquée. Ils présenteront leurs travaux et partageront leur vision de l’état actuel et de l’évolution nécessaire du calcul scientifique en conjonction avec les outils informatiques présents et futurs.

Programme

08:40-09:10 Accueil  
09:10-09:15 Présentation de la journée
09:15-11:10 Session 1  
  Gilbert Rogé
(Dassault Aviation)
Calcul Scientifique en Aérodynamique
  Christophe Domain
(EDF R&D)
HPC et modélisation multi-échelle des matériaux de structure des centrales nucléaires
  François Giersch
(Thales)
Machines Parallèles pour le traitement embarqué de données senseurs radar
11:10-11:35 Pause café  
11:35-12:50 Session 2  
  Nahid Emad
(Univ. Versailles,
MdS)
Paradigmes de programmation parallèle pour le calcul scientifique
  Martin Gander
(Univ. Genève)
Parallelization in the Time Direction: Parareal, ParaExp and Space-Time Multigrid
12:50-14:00 Buffet (salle F003, Institut Galilée)
14:00-15:55 Session 3  
  Christophe Calvin
(CEA/DEN/DANS/DM2S)
Utilisation du calcul intensif pour la simulation numérique appliquée aux systèmes nucléaires
et défis à venir
  Florian Plaza-Oñate
Amine Ghozlane et
Ndeye Aram Gaye (INRA)
Calcul intensif appliqué à l’étude de la flore intestinale humaine
Présentation du démonstrateur pré-industriel MetaGenoPolis
  Jocelyne Erhel
(IRISA)
Parallel sparse linear solvers and applications in CFD
15:55-16:15 Pause  
16:15-17:30 Session 4  
  Alain Cosnuau
(ONERA, CHP)
Expériences de Calcul Massivement Parallèle sur GPU
  Didier El Baz
(LAAS-CNRS)
Calcul Intensif Pair à Pair
17:30 Fin du séminaire  

Résumés des présentations

Gilbert Rogé
(Dassault Aviation)
Calcul Scientifique en Aérodynamique

Présentation des activités de Calcul Scientifique à la Direction de l'Aérodynamique de Dassault Aviation.

Au menu :

  • Problématiques (calcul des performances aérodynamiques, .)
  • Modélisation (équations de Navier-Stokes, modèles de turbulence, .)
  • Analyse Numérique (Éléments Finis, .)
  • Moyens de calcul (supercalculateurs, .)
  • Illustration par des résultats récents
  • Travail en équipe, MDO, collaboration avec les Centres de Recherche
  • Les axes de Recherche actuels
Christophe Domain
Ghiath Monnet,
Gilles Adjanor (EDF R&D)
HPC et modélisation multi-échelle des matériaux de structure des centrales nucléaires

Les matériaux de structure (cuve et internes de cuve) des centrales nucléaires sont soumis à l’irradiation neutronique qui engendre un vieillissement (i.e. changement des propriétés mécaniques). C’est un enjeu important pour la durée de vie des installations. L’origine de ce vieillissement est la formation de défauts créés par le flux de neutrons et leurs interactions avec les éléments d’alliage des matériaux. Les phénomènes mis en jeu sont complexe et afin à terme de construire des outils prédictifs il est nécessaire de partir des mécanismes élémentaires à l’échelle atomique. Pour cela, la simulation de la formation de ces défauts au vieillissement de la cuve est menée par une approche multi-échelle, possible avec le développement des moyens HPC. Cette modélisation vise à estimer le durcissement sous irradiation d'alliages représentatifs à partir du spectre neutronique du réacteur considéré, du flux neutronique, de la température et du temps d'irradiation ainsi que de la composition chimique de l'acier en certains éléments d'alliage. Pour cela différentes méthodes de simulation sont utilisées et elles correspondent aux différents mécanismes physiques mise en jeu : Dommage élémentaire de l’irradiation, formation des défauts ponctuels (lacunes et interstitiels en amas ou isolés) au sein des cascades de déplacements par calculs de structure électronique et dynamique moléculaire ; Diffusion et évolution à court et moyen terme des défauts ponctuels par des méthodes de Monte Carlo cinétique ; Diffusion et évolution à long terme des amas de défauts par des méthodes de cinétique chimique ; Micro-plasticité et détermination de la limite d’écoulement due aux défauts d’irradiation par dynamique moléculaire et dynamique des dislocations ; Calcul du durcissement moyen du matériau irradié en prenant en compte sa texture. Pour la plupart des méthodes de simulation, des algorithmes parallèles ont été implémentés (le Monte Carlo cinétique restant un point dur) et des ressources informatiques importantes sont nécessaires et le HPC est très largement utilisé.

François Giersch
(Thales)
Machines Parallèles pour le traitement embarqué de données senseurs radar

Cette présentation vise à tracer les éléments clés de l’évolution des machines de traitement numérique appliqué au monde des senseurs Radar. Il est question d’architecture matériel de traitement, avec un focus tout particulier sur la problématique du rapport ‘performance de traitement’ / ‘capacité d’entrée sortie’ dont on montrera qu’il était, et est en passe de redevenir sous une autre forme un élément clé des traitements Radar. On traite également dans cette présentation de l’impact des évolutions des modèles de programmation sur la gestion et le cout industriel du développement logiciel.

Nahid Emad
(Univ. Versailles, MdS)
Paradigmes de programmation parallèle pour le calcul scientifique

Le calcul haute performance dans les secteurs industriels et recherche est désormais incontournable. La nécessité d’utilisation des technologies HPC dans les applications allant de la simulation numérique des grandes problèmes industriels au développement des produits à grande diffusion (comme des tablettes ou téléphones mobiles) en passant par de nouvelles problématiques en nutrition et santé, semble dorénavant évident. Cependant, de part le très grand nombre de nœuds/cœurs hétérogènes des supercalculateurs récents ou émergents, une mise à jour de certaines de ces technologies s’impose et certains concepts comme les modèles de programmation sont à reconsidérer. La transition des paradigmes de programmation parallèle actuels vers ceux des supercalculateurs émergents engendre de nombreux problèmes de recherche et développement. Après l’exposé des principales caractéristiques des langages et modèles de programmation pour les nouveaux superordinateurs, nous présentons le paradigme de programmation multi-niveau ainsi que le modèle de programmation pour la conception et le développement de librairies numériques réutilisables. Nous présentons ensuite, l’environnement de programmation et d’exécution YML et les résultats d’expérimentation obtenus avec son déploiement sur des superordinateurs (comme HOPPER II de NERSC à Berkeley) et cluster de clusters (comme GRID5000).

Martin Gander
(Université de Genève)
Parallelization in the Time Direction: Parareal, ParaExp and Space-Time Multigrid

Many problems in science and engineering are time dependent, and time stepping methods are used to obtain approximate solutions. If the problems are large scale, or solutions are needed in real time, it is necessary to use the computing power of parallel computers. The classical strategy to parallelize time integration is to parallelize the solution at each time step, and to advance sequentially from time step to time step. This approach however neglects an entire dimension, the time dimension, which could also be used for the parallelization. In contrast to the spatial dimensions, the time dimension has however a direction: the solution later in time depends only on the solution earlier in time, and not vice versa. It therefore seems difficult to do useful computations at a future time step, before the present time step results are known.

I will present three algorithms which can be used to parallelize the time direction in an evolution problem. I will start with the parareal algorithm which is based on multiple shooting, although it was not invented that way. The idea of the parareal algorithm is to use an approximation of the Jacobian on a coarse grid in the Newton iteration classically used for solving the shooting equations. After reviewing a compact convergence result for this algorithm, I will illustrate its numerical performance for several examples of systems of ordinary and partial differential equations. These examples reveal that while the algorithm performs well for diffusive problems, convergence is unsatisfactory for hyperbolic equations. I will then explain the ParaExp algorithm, which is based on a completely different approach. It is a direct solver, based on an overlapping decomposition of the time direction, and uses the fact that matrix exponentials can be approximated cheaply and accurately over long time intervals using rational Krylov approximations. I will finally show a space-time algorithm based entirely on multigrid techniques, and show that for a time dependent heat equation this method scales perfectly, both strongly and weakly, in a large scale numerical test.

Christophe Calvin
(CEA/DEN/DANS/DM2S)
Utilisation du calcul intensif pour la simulation numérique appliquée aux systèmes nucléaires
et défis à venir

La simulation numérique est désormais un outil indispensable pour la modélisation des systèmes nucléaires actuels et futurs. A l'image d'autres domaines scientifiques et industriels, le calcul intensif permet de faire de la simulation numérique un outil extrêmement performant pour l'amélioration de la sûreté, l'optimisation et la conception de systèmes nucléaires. Nous présenterons au cours de cet exposé des exemples d'utilisation du calcul intensif appliqué à différents domaines (optimisation, CFD, neutronique, mécanique, physique couplée, maitrise des incertitudes …) mais également les nombreux défis qui se présentent qui sont génériques à la simulation numérique hautes performances mais également spécifique à l'industrie nucléaire.

Florian Plaza-Oñate,
Ndeye Aram Gaye,
Amine Ghozlane (INRA)
Calcul intensif appliqué à l’étude de la flore intestinale humaine
Présentation du démonstrateur pré-industriel MetaGenoPoli

Lors de cet exposé, nous présenterons le démonstrateur préindustriel MetaGenoPolis coordonné par l’Institut National de la Recherche Agronomique. Lancé en 2012, MetaGenoPolis vise à montrer l’impact de la flore intestinale sur la santé humaine en mettant en œuvre des méthodes dites de métagénomique. Nous décrirons d’abord l’infrastructure de calcul et de stockage déployée à MetaGenoPolis puis nous présenterons le pipeline de traitement à haut débit des données issues de séquenceurs à ADN. Enfin, nous donnerons quelques applications faisant appel à du calcul intensif (structuration d’un catalogue de gènes, découverte de gènes de résistance aux antibiotiques…)

Jocelyne Erhel
(IRISA)
Parallel sparse linear solvers and applications in CFD

Les simulations numériques en 3D conduisent à de grands systèmes linéaires creux, dont la résolution représente la majeure partie du temps de calcul. Les méthodes itératives de Krylov préconditionnées par des méthodes de sous-domaines sont actuellement parmi les plus efficaces sur des calculateurs parallèles. Pour accélérer leur convergence, les techniques de grille grossière ou de déflation sont indispensables. Cet exposé illustre ces concepts par des expériences numériques avec des matrices issues de la mécanique des fluides.

Alain Cosnuau
(ONERA, CHP)
Expériences de Calcul Massivement Parallèle sur GPU

Après une brève introduction sur les GPU et CUDA/C , un certain nombre d'expériences menées à l'Onera sur des thèmes très divers (temps réel, analyse numérique) seront présentées. Les résultats obtenus sur des applications réelles montrent l’intérêt de ce type de machine pour accélérer les calculs localement . Des gains très importants en temps de calcul sont obtenus moyennant un effort pour paralléliser tant au niveau théorique et algorithmique que pour le portage final optimisé sur GPU.

Didier El Baz
(LAAS-CNRS, Toulouse)
Calcul Intensif Pair à Pair

Cet exposé présente des méthodes numériques adaptées au calcul intensif dans un contexte de calcul distribué pair à pair. Les applications considérées ici relèvent de la simulation numérique et de l'optimisation. Ces travaux ont été développés dans le cadre du projet ANR Calcul Intensif Pair à Pair (CIP). Nous présenterons les principes du protocole de communication auto adaptatif P2PSAP et de l'environnement décentralisé de calcul intensif pair à pair P2PDC. Nous détaillerons des méthodes itératives distribuées et notamment des méthodes itératives hybrides. Puis nous présenterons des résultats expérimentaux notamment pour le problème de l'obstacle et certains problèmes de mathématiques financières sur diverses plateformes comme Grid 5000 et PlanetLab et divers réseaux comme les réseaux Ethernet, Infiniband et Myrinet.

Journée thématique Clouds & Réseaux (17 octobre 2013)

Le pôle MathStic de l'université Paris 13 organise une journée thématique "Clouds et Réseaux" le 17 Octobre 2013. La journée aura lieu en amphi Copernic, Institut Galilée, Université Paris 13.

Le programme de la journée :

08h45      Accueil
09h15      L'internet virtuel, Guy Pujolle (Université Pierre et Marie Curie - Paris 6)
10h15      QoS-aware NaaS requirements for Cloud computing, Ines Ayadi (Telecom ParisTech), Gladys Diaz (Université Paris 13)
10h45      Pause
11h15      Mutualisation de grilles de calcul sur un cloud privée: Retour d'expérience d'une mise en œuvre chez un grand assureur Français, Houcem Hamza (ANEO), Benoît de Pompignan (ANEO) : 
12h00      Modeling energy Consumption in Volunteer Clouds , Yanik Ngoko (Université Paris 13) :
12h30      Buffet
13h45      Babel, un protocole de routage pour réseaux hybrides, Juliusz Chroboczek (Université Paris Diderot - Paris 7) :
14h30      Les dessous de SlapOS, Alain Takoudjou (Université Paris 13) :
15h00      Pause
15h30      Augmented QoE in LISP-enabled Cloud Networks, Stefano Secci (Université Pierre et Marie Curie - Paris 6) :

Pour des raisons d'organisation, merci de prévenir par mail les organisateurs si vous souhaitez venir (mais on ne refusera personne) :

  • Khaled Boussetta : This email address is being protected from spambots. You need JavaScript enabled to view it.
  • Christope Cerin : This email address is being protected from spambots. You need JavaScript enabled to view it.